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ABSTRACT%
Despite the increasing popularity of head mounted displays 
(HMDs), development of efficient text entry methods on 
these devices has remained under explored. In this paper, 
we investigate the feasibility of head-based text entry for 
HMDs, by which, the user controls a pointer on a virtual 
keyboard using head rotation. Specifically, we investigate 
three techniques: TapType, DwellType, and GestureType. 
Users of TapType select a letter by pointing to it and 
tapping a button. Users of DwellType select a letter by 
pointing to it and dwelling over it for a period of time. 
Users of GestureType perform word-level input using a 
gesture typing style. Two lab studies were conducted. In the 
first study, users typed 10.59 WPM, 15.58 WPM, and 19.04 
WPM with DwellType, TapType, and GestureType, 
respectively. Users subjectively felt that all three of the 
techniques were easy to learn and considered the induced 
fatigue to be acceptable. In the second study, we further 
investigated GestureType. We improved its gesture-word 
recognition algorithm by incorporating the head movement 
pattern obtained from the first study. This resulted in users 
reaching 24.73 WPM after 60 minutes of training. Based on 
these results, we argue that head-based text entry is feasible 
and practical on HMDs, and deserves more attention.  

Author%Keywords%
HMD; Head-based text entry; Dwelling; Gesture keyboard.  

ACM%Classification%Keywords%
H.5.2. [Information interfaces and presentation]: User 
Interfaces-Input devices and strategies.  

INTRODUCTION%
Head-mounted displays (HMDs) are expected to be the 
main platform for VR/AR applications, such as VR movies, 
virtual shopping, chatting and so on. However, 

development of efficient text entry methods on these 
devices has remained under explored. Although touch-
based [12,23,34] and mid-air [5,24,33] text entry techniques 
have been proposed, they are either not efficient enough or 
require expensive peripheral devices (e.g. a camera or a 
glove).  

In this paper, we investigate the feasibility of head-based 
input techniques for text entry on HMDs, by which, the user 
controls a pointer on a virtual keyboard using head rotation. 
To our knowledge, studies of head-based text entry on 
HMDs do not exist in literature. We expect that HMDs will 
largely favor head-based interaction, such as text entry. 
Specifically, we propose and explore three HMD text entry 
techniques:  

•! TapType: Resembling tap-typing on smart phones, users 
move a pointer with head rotation and select a letter by 
tapping a button.  

•! DwellType: A hands-free input method, by which, users 
select a letter by dwelling over it for a period of time.  

•! GestureType: Enables users to perform word-level input 
using a gesture based typing style.  

We conducted two lab studies. The first study evaluated and 
compared the performance of the three proposed techniques. 
Results showed that DwellType, TapType and GestureType 
yielded text entry rates of 10.59 WPM, 15.58 WPM and 
19.04 WPM respectively, with an uncorrected error rate 
below 0.5%. Meanwhile, users found all three head-based 
text entry techniques were easy to learn and considered the 
induced fatigue to be acceptable.  

In the second study, we further investigated GestureType. 
We improved the gesture-word recognition algorithm by 
incorporating head movement patterns obtained in the first 
study. This resulted in around an 8% accuracy improvement 
for predicting the most probable candidate. With the new 
algorithm, users reached 24.73 WPM on average after eight 
practice sessions of ten sentences, with the best performer 
achieving 39 WPM. Meanwhile, we observed a significant 
learning effect in that users improved their input speed by 
leveraging the correction ability of the gesture-word 
recognition algorithm.  
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Therefore, we argue that head-based text entry is both 
feasible and practical on HMDs. We conclude this research 
with a discussion of the limitations and future work.  

RELATED%WORK%
We reviewed text entry techniques on HMDs, gaze- and 
head-based text entry, and gesture keyboards.  

Text%Input%on%HMDs%
Touch input has been explored for enabling text entry on 
HMDs. Using a handheld touchpad to move a cursor on a 
virtual keyboard, users could type 5.01 words per minute 
[23]. To enable text entry on the Google Glass, Swipezone 
(8.73 WPM) [12] divides the side touchpad into three zones. 
Users tap or swipe in a zone to specify a subgroup of letters, 
and then perform a second touch to select the desired letter. 
1D Handwriting (9.72 WPM) [34] employs a different 
method, in which users input text by handwriting one-
dimensional letters on the Google Glass’ touchpad.  

Mid-air input is another potential means for text entry on 
HMDs. With air writing [2, 29], users could write 11 words 
per minute in 3D space [24]. With chording (e.g. Pinch 
Keyboard [5]), where individual characters are mapped to 
multi-finger gestures, expert users could type 12-15 words 
per minute [5]. Sridhar et al. [30] optimized a set of multi-
finger gestures by considering both input performance and 
learnability. The text entry rate was able to reach 22 WPM 
after repetitive practicing. Moreover, indirect typing with a 
single-finger (13.2 WPM) [21] and ten-finger touch-typing 
in the air 29.2 WPM [33] have also been investigated. 
However, a drawback of mid-air techniques is they usually 
require additional hardware, such as cameras or gloves.  

Gaze9%and%Head9based%Text%Entry%
A substantial body of work has been conducted on gaze 
typing. Many are dwell-based: A user inputs a letter by 
gazing at it for a specific time period (dwell time). As 
reviewed in [19], most techniques used a constant dwell 
time between 450ms and 1000ms, and yielded text entry 
rate from 5 to 10 WPM. To investigate the lower bound of 
acceptable dwell time, Majaranta et al. [20] conducted an 
experiment in which users progressively decreased the 
dwell time to improve performance. After ten 15-minute 
sessions, the mean dwell time decreased from 876ms to 
282ms, while text entry rate increased from 6.9 to 19.9 
WPM.  

Dwell-free techniques have also been explored. Kristensson 
et al. [14] showed that the theoretical performance of dwell-
free gaze type could reach 46 WPM. That is twice the input 
speed of the fastest dwell-based techniques [20]. However, 
it is challenging to process continuous gaze gestures into 
words due to various sources of noises [26]. EyeK [28] 
replaces dwell operation with moving the eye pointer 
through the key in an inside-outside-inside fashion (6.03 
WPM). EyeSwipe (11.7 WPM) [16] requires users to 
accurately select the first and the last characters using 
reverse crossing, and glance through the vicinity of the 

middle characters in sequence. By doing so, a large number 
of unlikely candidate words can be pruned before applying 
pattern matching [15]. Filteryedping [26] recognizes the 
intended word by filtering extra letters from the sequence of 
letters gazed at by the user. Users typed 15.95 WPM after 
100-minutes of practicing.  

By comparison, there are fewer studies on head-based 
typing. Gizatdinova et al. [9] asked users to point at the 
keys of a virtual keyboard with gaze or head, and confirm 
the selection with a spacebar. They found users could type 
10.98 WPM with gaze, and 4.42 WPM with head. With a 
500ms dwell-based design, Hansen et al. [13] reported a 
head typing speed of 6.10 WPM on a dynamic keyboard. 
However, to our knowledge, no research has investigated 
the performance of head typing on HMDs, where the 
display is tightly attached to users’ head. We think that 
head-based input should be favored due to this 
characteristic.  

In this research, we identify three advantages of head typing 
over gaze typing on HMDs: First, head tracking is low-cost 
(e.g. with inertial sensor) and already built-in on many 
commercial HMDs (e.g. Oculus Rift and Samsung VR 
Gear). Second, previous research has shown that head input 
was more accurate than gaze [8, 13]. This would ease the 
design of the recognition algorithm and help to improve  
performance. Third, while typing with head, users can still 
perform visual search by moving their eyes when uncertain 
about key locations.  

Word9level%Gesture%Keyboard%%
Word-level gesture keyboards (WGKs) were first 
introduced by Zhai and Kristensson [15,37] to speed up text 
input using a stylus. On WGKs, users write a word with a 
continuous gesture path traversing the letters on a virtual 
keyboard in sequence. WGKs recognize the intended word 
by matching the gesture to templates of all possible words 
in a dictionary. Today, WGKs have been widely deployed 
on smart phones [38]. In a recent study, WGK yielded 30 
WPM in lab and 39 WPM in the wild [27].  

Researchers have applied WGKs to other input platforms. 
Bimanual Gesture Keyboard [4] allows users to type 
gestures with two thumbs on the split keyboard on tablets 
(39 WPM for experts). WatchWriter [11] demonstrates 
WGKs work well on smart watch devices with a much 
smaller touchscreen (24.3 WPM). Vulture [22] adapts 
WGKs to mid-air, where users remotely perform gestures 
on a virtual keyboard (20.6 WPM for novices). However, 
WGKs have not been applied to head-based text entry.  

HEAD9BASED%TEXT%ENTRY%ON%HMDS%
In this section, we describe the design and implementation 
of the three proposed head-based text entry techniques 
(TapType, DwellType and GestureType) on HMDs. All 
three techniques share the same software interface as shown 
in Figure 1. We rendered the virtual keyboard ten meters far 
away from the user to avoid parallax. To determine the 



 

 

appropriate keyboard size, we ran a pilot study with six 
participants. We test three keyboard width: 4, 6 and 8 
meters. 5 participants preferred the 6-meter width keyboard 
for its comfortableness of viewing and head moving. This 
yielded a field-of-vision (FOV) of 33.4 degree. Finally, we 
set the control/display ratio to be 1:1 to ensure a direct 
sense of head-based pointing [6]. 

 
Figure 1: The virtual keyboard interface for GestureType. 

Interfaces for TapType and DwellType are similar. 

The basic interaction concepts of the three techniques are 
straightforward and have been explained. We now provide 
more details on the design and implementation.  

For DwellType, we tested a range of time period, and found 
400ms to be appropriate, under which users easily 
committed unintentional selections. In this research, we did 
not progressively reduce dwell time as Majaranta et al. did 
in [20]. Therefore, the tested text entry rate should not 
represent the optimal performance of dwell-based typing. 
Moreover, another error-prone action was dwelling on the 
same key for too long before moving the cursor (possibly 
while searching the next key), resulting in an error of 
double selection. To deal with this, we set the dwell time to 
be 800ms after a key was activated and the cursor did not 
move off of it.  

For DwellType and TapType, the system displays the literal 
letters input by users in the text field, which we refer to as 
the default word in this paper. Users confirm the default 
word by clicking on the spacebar. Meanwhile, the system 
performs error correction (we will describe it later), and 
displays another four likely words in the candidate region, 
with the best candidate displayed in the first. Users select a 
suggested word by directly clicking on it. If a word has just 
been confirmed (or selected), clicking on “Backspace” will 
delete the word; Otherwise, the letter that has just been 
entered will be deleted.  

For GestureType, users press down the button to indicate 
the start of the gesture, and release it to indicate the end of 
the gesture. The system applies pattern matching to 
recognize the input gestures and convert them into words 
[15]. The predicted word with the highest probability (the 
default word) is directly displayed in the text field, with 

four other possible words in the candidate region. Users 
confirm the default word by directly gesturing the next 
word, or select another candidate by clicking on it. The 
system automatically appends a space after a word has been 
input. Clicking on Backspace deletes the word that has just 
been entered.  

Statistical%Decoding%Algorithm%
For DwellType and TapType, we apply the statistical 
decoding method [10] to handle the noise of the input. This 
method is widely used in modern software keyboards to 
deal with the “fat finger” problem [32]. The basic idea is to 
compute a word with a maximum posterior probability of 
the observed input.  

Let I = {(x&, y&)}&+,
-  denote the sequence of coordinates of 

endpoints the user inputs on the keyboard. According to the 
Bayes rule, the posterior probability of a candidate word W 
given input I is computed as  

P W I = P I W P(W)/P(I) 

where P(W) is the prior probability of W being needed by 
the user, which can be determined as the frequency of 
words in a corpus; P(I) is constant for all candidates, which 
can be ignored here. Further, we assume individual key 
acquisition actions are independent of each other [10]. Thus, 
we have 

P I W = 1 2&, 3& 4&

-

&+,
 

where 1 2&, 3& 4&  is the distribution of endpoints for 4& (the 
ith letter in W). In literature, it is often assumed to be a 2D 
Gaussian distribution. Thus, to determine the parameters, 
we collected 500 tapping points from real users. We 
calculated the distribution to have a zero mean and a 
standard deviation of 0.75 and 0.38 on X-axis and Y-axis, 
respectively. The unit of measurement is one key-width.  

Word9Gesture%Recognition%
We implemented the gesture-word recognition algorithm by 
referring to SHARK2 [15] and Vulture [22]. According to 
our observation, head-based pointing was more accurate 
than finger input. Hence, we only utilized the location 
channel [15]. We now briefly describe the algorithm.  

WGKs decode gestures input into words that are predefined 
in a dictionary. Before processing, each dictionary word is 
transformed into a template: the lines connecting the key 
centroid of sequential letters in the word. To handle a 
gesture, the algorithm first prunes words in the dictionary 
whose start/end location is farther than 1 key-width from 
the start/end of the gesture [22]. Then, the algorithm 
computes the “distance” between a candidate word and the 
input gesture, which is defined as the sum of the Euler 
distance between each pair of corresponding points. In our 
implementation, both the gesture and the template of a word 
are sampled into N = 50 equidistant points [22].  



 

 

5 = 6& − 8&

9

&+,
 

where u is the unknown shape that is being compared to the 
template word t. The word with the minimal distance is 
recognized as the best match.  

For all three of the techniques, we used a 10K lexicon, 
which contained the most probable words derived from the 
American National Corpus [1]. The lexicon also contains 
the frequency of words. Previous research showed 10K 
words could cover 90% of language use in daily life [25].  

STUDY%1:%EVALUATING%THREE%TECHNIQUES%
The goal was to evaluate the text entry rate of the three 
head-based text entry techniques. We also investigated 
usability issues such as fatigue and learnability.   

Participants%
Eighteen participants (12 males and 6 females; aged from 
18 to 27, M = 21.56) were recruited from the campus. All 
participants were familiar with the QWERTY keyboard (M 
= 4, from 1 – No skill to 5 – Expert) according to self-
report. Thirteen participants had previous experience with 
HMDs before.  

Apparatus%%

 
Figure 2: The experimental setting in Study 1. A participant 

entered text on an HMD device with head rotation.  

The experiment was conducted on Samsung’s Gear VR 
with an S6 Edge Plus smartphone, which afforded a 96-
degree field of vision in the HMD. We employed a 
Bluetooth gamepad to provide the button input. The system 
leveraged built-in sensors on the phone to capture head 
rotation. We implemented the three head-based text entry 
techniques and the experimental system in Unity 3D. Our 
software system logged gesture data (including timestamp 
for each point), and interaction operations such as selection 
and deletion of words.  

Design%
Since all of the techniques used head rotation for input, we 
employed a between-subject design to avoid potential 
cross-learning effect between the three techniques. Each 
technique was tested on 6 participants (4 males and 2 
females). Each participant transcribed 48 phrases in 6 
sessions, with each session containing 8 phrases. The 48 
phrases were randomly sampled from the MacKenzie 
phrase set [18]. The two independent factors were 

Technique (DwellType, TapType and GestureType) and 
Session.  

Procedure%
Before testing, we described to participants the goal of the 
experiment and the input method of the technique that was 
to be tested. We told participants that error correction was 
supported. Participants then familiarized themselves with 
the technique. This warm-up phase usually took no more 
than three minutes. We then instructed them to enter text 
“as quickly and accurately as possible”. Between sessions, 
participants took a 1-minute break. After the experiment, 
we interviewed participants, and asked them to comment on 
the technique that was tested. This experiment took about 
50 minutes.  

Result%
Text entry rate is measured in Words Per Minute (WPM), 
with this formula 

:1; =
<

=
×60×

1

5
 

where <  is the length of the transcribed string, and T is 
time in seconds.  

 
Figure 3: Text-entry rates of three techniques over sessions in 

Study 1. Error bars indicate standard deviation. 

Fig. 3 shows the mean text entry rate over sessions for each 
technique. Mixed ANOVA showed significant effects of 
Technique (F2,15 = 19.7, p < .0001) and Session (F5,75 = 65.5, 
p<.0001) on text entry rate. Among the three tested 
techniques, GestureType was the fastest. Participants typed 
15.75 WPM (SD = 2.62) in the first session, and achieved 
19.04 WPM (SD = 3.26) in the final session. TapType was 
the second fastest. Participants typed 10.14 WPM (SD = 
1.13) at the beginning, and reached 15.58 WPM (SD = 
2.42) in the final session. DwellType was the slowest. 
Participants typed 8.48 WPM (SD = 1.16) in the first 
session and achieved 10.59 WPM (SD = 1.07) in the final 
session. 

Word%Level*Uncorrected*and*Corrected*Error*Rate*
The corrected error rate and uncorrected error rate of all 
three techniques were found to be low. For TapType, 
DwellType and GestureType, the mean uncorrected error 
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rates were 0.57%, 2.46%, and 1.13% respectively, and the 
mean corrected error rates were 1.45%, 1.23%, and 3.08% 
respectively. ANOVA showed no significant effects of 
Technique on corrected error rate or uncorrected error rate.  

Interaction*Statistics*
We examined details on how users interacted with the three 
techniques. We investigated three word-level actions (Table 
1): Default, Select and Delete. Default means that the user 
confirmed the default word in the text field. For TapType 
and DwellType, it was the literal letters that had been input. 
For GestureType, it was the Top-1 word that was predicted. 
Select means the user selected a predicted word from the 
candidate region other than the default word. Delete means 
the user deleted a word that had just been input.  

Action Y/N TapType DwellType GestureType 

Default 
Y 381 1425        1318  

N 3 37             14 

Select 
Y 1193  82 254  

N 6 1              4 

Delete - 23 19  49 

Total - 1606 1564 1639 

Table 1: The number of word-level interactions done with the 
three head-based techniques. Y/N indicates whether the input 

word was correct or not.  

For DwellType, 93.48% of the actions were Default 
meaning that the participant entered every key of the 
intended word. In 5.31% of the actions, the users leveraged 
error correction meaning that the user dwelled on the wrong 
key but the system successful corrected the input. The users 
deleted the word in only 1.21% of the actions. These results 
indicate that users were quite accurate at pointing in 
DwellType. This is probably because by dwelling, users 
looked at the letters when confirming selection. Due to this, 
it was unlikely that a wrong letter was input.  

For TapType, the results were quite different from 
DwellType. Only 23.91% of actions were Default meaning 
that the participant clicked inside every key of the intended 
word. In 74.65% of the actions, users leveraged error 
correction to input and selected a word in the candidate 
region. The users deleted the word in only 1.43% of the 
actions. These results showed that with TapType, 
participants relied more on the correction ability of the 
algorithm to input, rather than selecting keys accurately.  

For GestureType, the most frequent action was Default 
(81.27%) meaning that the user wrote a word gesture and 
the system decoded it as the correct intended word. In 15.74% 
of the actions, the user selected a word other than the 
default one. In only 2.99% of the actions, users deleted the 
word they had written in order to input again. These results 
showed the gesture-word recognition algorithm performed 
well. For 97% of the actions, it successfully interpreted 

input either as the best match or by suggesting the intended 
in the candidate region.  

Subjective*Interview*
Fig. 4 shows the subjective feedback of participants. Since 
this study followed a between-subject design, participants 
gave these scores independently, without knowing about 
other techniques.  

We observe a significant effect of Technique on Perceived 
Speed (F2, 15=10.5, p < .01). Post hoc pairwise comparisons 
with Bonferroni correction showed the difference between 
DwellType and the other two techniques to be significant, 
while the difference between TapType and GestureType 
was not significant. Participants found all three techniques 
were easy to learn (M = 4.39, SD = 0.70), and subjectively 
perceived TapType and GestureType to be fast (M = 3.83, 
SD = 0.75; M = 4.33, SD = 0.82), and DwellType to be 
slower (M = 2.5, SD = 0.55). It was also good to find that 
participants considered the induced fatigue of all three 
techniques to be acceptable (M = 2.61, SD = 1.03). Overall, 
participants liked TapType and GestureType more than 
DwellType. 

 
Figure 4: Subjective feedback of participants over three 

techniques (from 1 - not good to 5 - good) in Study 1. Error 
bars indicate standard deviation. 

IMPROVING!Word.Gesture!Recognition%
 OP OQ a b 

Start 0.2455 0.1513 1.27 0.79 

End 0.2694 0.1859 1.20 0.83 

Middle 0.3856 0.2213 1.32 0.76 
Table 2. The standard deviation of distance of the start, the 

end and the middle points of gestures in Study 1. a and b are 
the parameters to define the Mahalanobis distance.  

In previous research, word-gesture recognition algorithms 
were researched for finger/pen input. In our research, the 
human head was used as the pointing device. Therefore, 
there was the question of whether head input had any 
distinct patterns that would affect the design of the 
algorithm. To investigate this issue, we used the gesture 
data from the first study to analyze the distance between 
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gesture and the word template at the start, at the end, as 
well as at the middle points. We sampled 50 equidistant 
points on each gesture; middle points were all 48 points 
except start point and end point.  

Results are summarized in Table 2, from which, we had two 
major findings. First, users performed more accurately in 
Y-axis than in X-axis. The mean distance on X-axis was 
1.62, 1.45 and 1.74 times of that on Y-axis at the start, the 
end and middle points of gestures respectively. In addition, 
we found head rotation speed on X axis (5.32 key/s) was 
3.41 times of that on Y axis (1.56 key/s). This finding 
inspired us to place different weight on X-axis and Y-axis 
for interpreting the gesture. To achieve this, we used the 
Mahalanobis distance instead of the Euler distance which 
had been used in our first study as well as in all previous 
research [15, 22]. In our research, the Mahalanobis distance 
was defined as 

5R =
∆2T

UT
+
∆3T

WT
 

where 

UW = 1,XXX
U

W
=
YZ

Y[
 

We use the Mahalanobis distance in order to prune 
candidate words and compute the distance between gestures 
and templates. According to an offline simulation based on 
the gesture data in Study 1, this modification improved the 
Top-1 accuracy (predicting the intended word as the most 
probable) from 81.8% to 84.0% when compared to the 
Euler distance-based algorithm.  

Second, users performed more accurately for the start and 
end of the gestures than the middle points. This inspired us 
to assign more weight to the start and end of gestures than 
to middle points. To determine the optimal weight, we ran a 
simulation study that sampled weight value from 0 to 1 for 
the mean distance of middle points. Our results showed that 
a weight of 0.5 would yield an optimal Top-1 prediction 
accuracy of 88.8%. This provided the second improvement 
of the gesture-word recognition algorithm.  

5\ = 0.25×5\, + 0.25×5\9 + 0.5×
5\&

9_,
&+T

` − 2
 

where 5\& is the Mahalanobis distance between the ith pair 
of sampled points of template and input shape.  

STUDY%2:%THE%POTENTIAL%OF%HEAD%GESTURE%TYPING%
In this experiment, we further investigated GestureType. 
The goal was to explore the expert performance with our 
modified algorithm.  

Participants%and%Apparatus%
We recruited 12 participants (8 males and 4 females; aged 
from 20 to 24, M = 21.08) in this study. None participated 
in the first study. Participants rated their familiarities of 

QWERTY keyboard between 3 and 5 (M = 4.17). Nine 
participants used gesture typing before but none of them 
used it as their default keyboard. Eleven participants had 
previous experience with HMDs.  

We used the same apparatus as in Study 1. We employed 
the modified word-gesture recognition algorithm based on 
the Mahalanobis distance.  

Design%
The experiment was designed to have eight sessions. In 
each session, all participants transcribed the same ten 
phrases that were randomly sampled from the MacKenzie 
phrase set [18], which contained a total of 49 words, among 
which 39 were distinct. On average, a word contained 5.15 
(SD = 2.54) letters. In this study, the only independent 
factor was Session.  

Procedure%
Before the experiment, we described the goal of the 
experiment and the interaction method to the participants. 
Participants then familiarized themselves with the HMD 
device and interaction for five minutes. We then instructed 
them to perform “as accurately and quickly as possible”. 
After each session, participants took a 1-minute break. 
After the experiment, we asked them to fill a questionnaire 
and interviewed them about the subjective feedback.  

Result%

Text%Entry*Rate*

 
Figure 5: Mean entry rates (WPM) over sessions in Study2. 

Error bars indicate standard deviation. 

As shown in Fig. 5, users typed 17.04 WPM (SD = 6.02) in 
the first session and improved by 45.13% to achieve 24.73 
WPM (SD = 8.48) in the last session. Text entry rate was 
increased by 5.03 WPM in Session 1-4, and 2.01 WPM in 
Session 5-8. The best performer typed 25 WPM in the first 
session and ended up at 39 WPM. The learning curve 
seemed not to converge at the end of the experiment.  

Error*Rate*
In the eight sessions, the word-level uncorrected error rates 
were 1.19%-2.56% (M = 1.96%, SD = 0.60%), while the 
word-level corrected error rates were 1.38%-5.96% (M = 
3.86%, SD = 1.35%). There was no significant effect of 
Session on either error rates.  
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The*learning*effect*
To gain deeper insight into performance improvement, we 
broke down the text entry time into three components: 
gesturing time, selecting time and elapsed time. Gesture 
time was the time spent on performing gestures. Selecting 
time was the time span from ending the gesture to clicking 
on a candidate word. Elapsed time was the time span from 
inputting the last word to starting the gesture of the next 
word. According to the data, gesturing time, selecting time 
and elapsed time accounted for 61.64%, 7.46% and 30.90% 
of the total text entry time respectively. As shown in Fig. 6, 
the three component times continued to decrease with 
sessions, and started to converge in the 5th or 6th session. On 
the other hand, the Top-1 accuracy improved from 85.0% in 
the first session to 89.8% in the last session, even though 
ANOVA showed no significant effect of Session on Top-1 
accuracy (F7,77 = 1.69, p = .12). These results showed that 
participants learned to improve gesturing speed without 
sacrificing final accuracy.  

 
Figure 6: Mean gesturing time, selecting time and elapsed time 

over sessions in Study 2. Error bars indicate standard 
deviation. 

The post-experiment interview also offered insights into the 
strategy of users to perform better by adapting their input 
behavior. As participants reported, they found longer words 
to be more tolerant to inaccurate gestures. Therefore, they 
performed gestures faster for longer words. To verify this, 
we examined how the start distance, the end distance and 
the middle-point distance changed with word length (the 
number of contained letters). As shown in Fig. 7, as word 
length increased, the mean gesture start/end distances were 
relatively stable while the mean middle-point distance 
increased significantly (F8,88=51.9, p<.0001). This indicated 
that for longer words, participants actually performed more 
inaccurately for the middle points rather than gesture start 
and end, in order to save movement time. Moreover, users 
had learned strategies to input individual words. Take 
“shopping” for example. Since it was easy to confuse with 
“shipping”, participants reported that they would traverse ‘o’ 
carefully to avoid ‘i’. Examples also included “breathing” 
vs. “breaking”, “confirm” vs. “conform”, etc.  

 
Figure 7: Distance (in key size) of gesture start, gesture end, 

and middle points vs. word length in Study2. 

Improvement*of*the*gesture%word*recognition*algorithm*
We assessed the power of the gesture-word recognition 
algorithm based on the Top-1 accuracy (predicting users’ 
intended word as the best match). In Study 1 and Study 2, 
the mean Top-1 accuracies were 81.27% and 84.5% 
respectively. The improvement was 3.23%, which was not 
as large as we found in the simulation study (7%). However, 
we should consider the fact that participants transcribed the 
same ten phrases in eight times in Study 2, and text entry 
rate was 29% faster. To enable fair comparison, we ran 
another simulation by testing the algorithm of Study 1 with 
gesture data in Study 2. Results of this showed that the Top-
1 accuracy was only 74.19%, which was much lower than 
the 84.5% we found in Study 2. This result showed the 
improved algorithm indeed had a stronger power to decode 
gestures into words.  

Subjective*user*feedback*
The subjective user feedback was generally the same as that 
of Study 1 for GestureType. In addition, most participants 
reported they started to feel fatigue at the 6th session, which 
was after intermittently typing 60 phrases for 40 minutes. 
This result showed that the fatigue from head-based typing 
was acceptable when text entry is short on HMDs (e.g. 
searching a keyword or replying to a message).  

 
Figure 8: Subjective user feedback of Study 2 with error bars 

showing standard deviation.  
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LIMITATION%AND%FUTURE%WORK%
The present research has a number of limitations, which 
point to the direction of future work.  

First, in this paper, the keyboard size and the control/ 
display ratio were determined according to the results of 
our pilot study. We did not thoroughly research their effects 
on users’ ability of head-based pointing or text entry.  

Second, while this research focuses more on GestureType, 
there remains room to research the other two techniques 
(DwellType and TapType) in more depth. For example, it 
would be valuable to research how expert users will adjust 
the dwell time and how fast they can input with DwellType.  

Third, GestureType only supports words in a predefined 
dictionary. However, inputting OOV (out of vocabulary) 
words is also important for practical use. One simple 
solution is to combine TapType with it to support both 
word-level and character-level input. The mode switch 
should be smooth if we can distinguish a tap and a gesture 
accurately. It would then be useful to examine the resulting 
performance.  

Forth, we used simple classical algorithms to parse input in 
this research. More sophisticated algorithms and models 
such as LSTM for gesture keyboard decoding [Error! 
Reference source not found.] and HMM decoder [Error! 
Reference source not found.] should further improve the 
performance. We acknowledge that the obtained 
performance of this paper does not reflect the ceiling rate, 
but it is appropriate to explore the feasibility and compare 
the general performance of three techniques.  

Fifth, the current evaluation is a lab study. It is valuable to 
run a long-term field experiment to test the performance 
over a longer period of study and whether results would be 
affected by external environment or everyday composition.  

CONCLUSION%%
Head-mounted displays are emerging interaction platforms, 
which can accommodate various VR and AR applications. 
To our knowledge, our research is the first to compare 
different head-based text entry techniques on HMDs. We 
tested three representative methods with and without hands. 
Our results showed that head-based text entry techniques 
are both feasible and practical solutions on HMDs. Head-
based text entry techniques are not as fatiguing as it may 
seem at first impression. Users can learn to type with their 
head very quickly, and the text entry speeds are satisfactory.  

In particular, we investigated gesture typing on HMDs in 
depth. Our research was the first to adapt a gesture 
keyboard to a HMD. We demonstrated that without the 
need to pause to select keys, a head-based gesture keyboard 
(GestureType) was unexpectedly fast (24.73 WPM), and 
significantly outperformed head-based tap input (TapType) 
by 59%. In contrast, the difference between the two input 
methods for finger-based keyboard was not as significant 
[25]. This is probably because the head is much slower and 

less flexible than the finger. Therefore, our research 
contributes a new scenario where gesture keyboards offer 
an incomparable advantage.  

Our research also identified patterns of head movement in 
HMDs: User performed more accurately on X axis than on 
Y axis. We utilize this finding to improve the gesture-word 
recognition algorithm. As a result, both the simulation study 
and the real-user study demonstrated the validity and 
strength of the improvement. In this sense, we also 
contributed a gesture-word recognition algorithm variation, 
more specifically, by leveraging the Mahalanobis distance. 
We hope this method can inspire future research about 
gesture keyboard input where the motor control ability on 
X-axis and Y-axis are not equal. Moreover, the pattern of 
head movement we found in HMD may also provide 
guidance for more HMD research other than text entry.  
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