

Tap,%Dwell%or%Gesture?:%Exploring%Head9Based%Text%Entry%
Techniques%for%HMDs%

Chun Yu1 Yizheng Gu1 Zhican Yang1 Xin Yi1 Hengliang Luo2 Yuanchun Shi1
1Key Laboratory of Pervasive Computing, Ministry of Education

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China

2Samsung Beijing R&D Center, Beijing, 100028, China
{chunyu, shiyc}@tsinghua.edu.cn, {guyz13, yang-zc13, yix15}@mails.tsinghua.edu.cn, hl.luo@samsung.com

ABSTRACT%
Despite the increasing popularity of head mounted displays
(HMDs), development of efficient text entry methods on
these devices has remained under explored. In this paper,
we investigate the feasibility of head-based text entry for
HMDs, by which, the user controls a pointer on a virtual
keyboard using head rotation. Specifically, we investigate
three techniques: TapType, DwellType, and GestureType.
Users of TapType select a letter by pointing to it and
tapping a button. Users of DwellType select a letter by
pointing to it and dwelling over it for a period of time.
Users of GestureType perform word-level input using a
gesture typing style. Two lab studies were conducted. In the
first study, users typed 10.59 WPM, 15.58 WPM, and 19.04
WPM with DwellType, TapType, and GestureType,
respectively. Users subjectively felt that all three of the
techniques were easy to learn and considered the induced
fatigue to be acceptable. In the second study, we further
investigated GestureType. We improved its gesture-word
recognition algorithm by incorporating the head movement
pattern obtained from the first study. This resulted in users
reaching 24.73 WPM after 60 minutes of training. Based on
these results, we argue that head-based text entry is feasible
and practical on HMDs, and deserves more attention.

Author%Keywords%
HMD; Head-based text entry; Dwelling; Gesture keyboard.

ACM%Classification%Keywords%
H.5.2. [Information interfaces and presentation]: User
Interfaces-Input devices and strategies.

INTRODUCTION%
Head-mounted displays (HMDs) are expected to be the
main platform for VR/AR applications, such as VR movies,
virtual shopping, chatting and so on. However,

development of efficient text entry methods on these
devices has remained under explored. Although touch-
based [12,23,34] and mid-air [5,24,33] text entry techniques
have been proposed, they are either not efficient enough or
require expensive peripheral devices (e.g. a camera or a
glove).

In this paper, we investigate the feasibility of head-based
input techniques for text entry on HMDs, by which, the user
controls a pointer on a virtual keyboard using head rotation.
To our knowledge, studies of head-based text entry on
HMDs do not exist in literature. We expect that HMDs will
largely favor head-based interaction, such as text entry.
Specifically, we propose and explore three HMD text entry
techniques:

•! TapType: Resembling tap-typing on smart phones, users
move a pointer with head rotation and select a letter by
tapping a button.

•! DwellType: A hands-free input method, by which, users
select a letter by dwelling over it for a period of time.

•! GestureType: Enables users to perform word-level input
using a gesture based typing style.

We conducted two lab studies. The first study evaluated and
compared the performance of the three proposed techniques.
Results showed that DwellType, TapType and GestureType
yielded text entry rates of 10.59 WPM, 15.58 WPM and
19.04 WPM respectively, with an uncorrected error rate
below 0.5%. Meanwhile, users found all three head-based
text entry techniques were easy to learn and considered the
induced fatigue to be acceptable.

In the second study, we further investigated GestureType.
We improved the gesture-word recognition algorithm by
incorporating head movement patterns obtained in the first
study. This resulted in around an 8% accuracy improvement
for predicting the most probable candidate. With the new
algorithm, users reached 24.73 WPM on average after eight
practice sessions of ten sentences, with the best performer
achieving 39 WPM. Meanwhile, we observed a significant
learning effect in that users improved their input speed by
leveraging the correction ability of the gesture-word
recognition algorithm.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI 2017, May 06-11, 2017, Denver, CO, USA
© 2017 ACM. ISBN 978-1-4503-4655-9/17/05…$15.00
DOI: http://dx.doi.org/10.1145/3025453.3025964

Therefore, we argue that head-based text entry is both
feasible and practical on HMDs. We conclude this research
with a discussion of the limitations and future work.

RELATED%WORK%
We reviewed text entry techniques on HMDs, gaze- and
head-based text entry, and gesture keyboards.

Text%Input%on%HMDs%
Touch input has been explored for enabling text entry on
HMDs. Using a handheld touchpad to move a cursor on a
virtual keyboard, users could type 5.01 words per minute
[23]. To enable text entry on the Google Glass, Swipezone
(8.73 WPM) [12] divides the side touchpad into three zones.
Users tap or swipe in a zone to specify a subgroup of letters,
and then perform a second touch to select the desired letter.
1D Handwriting (9.72 WPM) [34] employs a different
method, in which users input text by handwriting one-
dimensional letters on the Google Glass’ touchpad.

Mid-air input is another potential means for text entry on
HMDs. With air writing [2, 29], users could write 11 words
per minute in 3D space [24]. With chording (e.g. Pinch
Keyboard [5]), where individual characters are mapped to
multi-finger gestures, expert users could type 12-15 words
per minute [5]. Sridhar et al. [30] optimized a set of multi-
finger gestures by considering both input performance and
learnability. The text entry rate was able to reach 22 WPM
after repetitive practicing. Moreover, indirect typing with a
single-finger (13.2 WPM) [21] and ten-finger touch-typing
in the air 29.2 WPM [33] have also been investigated.
However, a drawback of mid-air techniques is they usually
require additional hardware, such as cameras or gloves.

Gaze9%and%Head9based%Text%Entry%
A substantial body of work has been conducted on gaze
typing. Many are dwell-based: A user inputs a letter by
gazing at it for a specific time period (dwell time). As
reviewed in [19], most techniques used a constant dwell
time between 450ms and 1000ms, and yielded text entry
rate from 5 to 10 WPM. To investigate the lower bound of
acceptable dwell time, Majaranta et al. [20] conducted an
experiment in which users progressively decreased the
dwell time to improve performance. After ten 15-minute
sessions, the mean dwell time decreased from 876ms to
282ms, while text entry rate increased from 6.9 to 19.9
WPM.

Dwell-free techniques have also been explored. Kristensson
et al. [14] showed that the theoretical performance of dwell-
free gaze type could reach 46 WPM. That is twice the input
speed of the fastest dwell-based techniques [20]. However,
it is challenging to process continuous gaze gestures into
words due to various sources of noises [26]. EyeK [28]
replaces dwell operation with moving the eye pointer
through the key in an inside-outside-inside fashion (6.03
WPM). EyeSwipe (11.7 WPM) [16] requires users to
accurately select the first and the last characters using
reverse crossing, and glance through the vicinity of the

middle characters in sequence. By doing so, a large number
of unlikely candidate words can be pruned before applying
pattern matching [15]. Filteryedping [26] recognizes the
intended word by filtering extra letters from the sequence of
letters gazed at by the user. Users typed 15.95 WPM after
100-minutes of practicing.

By comparison, there are fewer studies on head-based
typing. Gizatdinova et al. [9] asked users to point at the
keys of a virtual keyboard with gaze or head, and confirm
the selection with a spacebar. They found users could type
10.98 WPM with gaze, and 4.42 WPM with head. With a
500ms dwell-based design, Hansen et al. [13] reported a
head typing speed of 6.10 WPM on a dynamic keyboard.
However, to our knowledge, no research has investigated
the performance of head typing on HMDs, where the
display is tightly attached to users’ head. We think that
head-based input should be favored due to this
characteristic.

In this research, we identify three advantages of head typing
over gaze typing on HMDs: First, head tracking is low-cost
(e.g. with inertial sensor) and already built-in on many
commercial HMDs (e.g. Oculus Rift and Samsung VR
Gear). Second, previous research has shown that head input
was more accurate than gaze [8, 13]. This would ease the
design of the recognition algorithm and help to improve
performance. Third, while typing with head, users can still
perform visual search by moving their eyes when uncertain
about key locations.

Word9level%Gesture%Keyboard%%
Word-level gesture keyboards (WGKs) were first
introduced by Zhai and Kristensson [15,37] to speed up text
input using a stylus. On WGKs, users write a word with a
continuous gesture path traversing the letters on a virtual
keyboard in sequence. WGKs recognize the intended word
by matching the gesture to templates of all possible words
in a dictionary. Today, WGKs have been widely deployed
on smart phones [38]. In a recent study, WGK yielded 30
WPM in lab and 39 WPM in the wild [27].

Researchers have applied WGKs to other input platforms.
Bimanual Gesture Keyboard [4] allows users to type
gestures with two thumbs on the split keyboard on tablets
(39 WPM for experts). WatchWriter [11] demonstrates
WGKs work well on smart watch devices with a much
smaller touchscreen (24.3 WPM). Vulture [22] adapts
WGKs to mid-air, where users remotely perform gestures
on a virtual keyboard (20.6 WPM for novices). However,
WGKs have not been applied to head-based text entry.

HEAD9BASED%TEXT%ENTRY%ON%HMDS%
In this section, we describe the design and implementation
of the three proposed head-based text entry techniques
(TapType, DwellType and GestureType) on HMDs. All
three techniques share the same software interface as shown
in Figure 1. We rendered the virtual keyboard ten meters far
away from the user to avoid parallax. To determine the

appropriate keyboard size, we ran a pilot study with six
participants. We test three keyboard width: 4, 6 and 8
meters. 5 participants preferred the 6-meter width keyboard
for its comfortableness of viewing and head moving. This
yielded a field-of-vision (FOV) of 33.4 degree. Finally, we
set the control/display ratio to be 1:1 to ensure a direct
sense of head-based pointing [6].

Figure 1: The virtual keyboard interface for GestureType.

Interfaces for TapType and DwellType are similar.

The basic interaction concepts of the three techniques are
straightforward and have been explained. We now provide
more details on the design and implementation.

For DwellType, we tested a range of time period, and found
400ms to be appropriate, under which users easily
committed unintentional selections. In this research, we did
not progressively reduce dwell time as Majaranta et al. did
in [20]. Therefore, the tested text entry rate should not
represent the optimal performance of dwell-based typing.
Moreover, another error-prone action was dwelling on the
same key for too long before moving the cursor (possibly
while searching the next key), resulting in an error of
double selection. To deal with this, we set the dwell time to
be 800ms after a key was activated and the cursor did not
move off of it.

For DwellType and TapType, the system displays the literal
letters input by users in the text field, which we refer to as
the default word in this paper. Users confirm the default
word by clicking on the spacebar. Meanwhile, the system
performs error correction (we will describe it later), and
displays another four likely words in the candidate region,
with the best candidate displayed in the first. Users select a
suggested word by directly clicking on it. If a word has just
been confirmed (or selected), clicking on “Backspace” will
delete the word; Otherwise, the letter that has just been
entered will be deleted.

For GestureType, users press down the button to indicate
the start of the gesture, and release it to indicate the end of
the gesture. The system applies pattern matching to
recognize the input gestures and convert them into words
[15]. The predicted word with the highest probability (the
default word) is directly displayed in the text field, with

four other possible words in the candidate region. Users
confirm the default word by directly gesturing the next
word, or select another candidate by clicking on it. The
system automatically appends a space after a word has been
input. Clicking on Backspace deletes the word that has just
been entered.

Statistical%Decoding%Algorithm%
For DwellType and TapType, we apply the statistical
decoding method [10] to handle the noise of the input. This
method is widely used in modern software keyboards to
deal with the “fat finger” problem [32]. The basic idea is to
compute a word with a maximum posterior probability of
the observed input.

Let I = {(x&, y&)}&+,
- denote the sequence of coordinates of

endpoints the user inputs on the keyboard. According to the
Bayes rule, the posterior probability of a candidate word W
given input I is computed as

P W I = P I W P(W)/P(I)

where P(W) is the prior probability of W being needed by
the user, which can be determined as the frequency of
words in a corpus; P(I) is constant for all candidates, which
can be ignored here. Further, we assume individual key
acquisition actions are independent of each other [10]. Thus,
we have

P I W = 1 2&, 3& 4&

-

&+,

where 1 2&, 3& 4& is the distribution of endpoints for 4& (the
ith letter in W). In literature, it is often assumed to be a 2D
Gaussian distribution. Thus, to determine the parameters,
we collected 500 tapping points from real users. We
calculated the distribution to have a zero mean and a
standard deviation of 0.75 and 0.38 on X-axis and Y-axis,
respectively. The unit of measurement is one key-width.

Word9Gesture%Recognition%
We implemented the gesture-word recognition algorithm by
referring to SHARK2 [15] and Vulture [22]. According to
our observation, head-based pointing was more accurate
than finger input. Hence, we only utilized the location
channel [15]. We now briefly describe the algorithm.

WGKs decode gestures input into words that are predefined
in a dictionary. Before processing, each dictionary word is
transformed into a template: the lines connecting the key
centroid of sequential letters in the word. To handle a
gesture, the algorithm first prunes words in the dictionary
whose start/end location is farther than 1 key-width from
the start/end of the gesture [22]. Then, the algorithm
computes the “distance” between a candidate word and the
input gesture, which is defined as the sum of the Euler
distance between each pair of corresponding points. In our
implementation, both the gesture and the template of a word
are sampled into N = 50 equidistant points [22].

5 = 6& − 8&

9

&+,

where u is the unknown shape that is being compared to the
template word t. The word with the minimal distance is
recognized as the best match.

For all three of the techniques, we used a 10K lexicon,
which contained the most probable words derived from the
American National Corpus [1]. The lexicon also contains
the frequency of words. Previous research showed 10K
words could cover 90% of language use in daily life [25].

STUDY%1:%EVALUATING%THREE%TECHNIQUES%
The goal was to evaluate the text entry rate of the three
head-based text entry techniques. We also investigated
usability issues such as fatigue and learnability.

Participants%
Eighteen participants (12 males and 6 females; aged from
18 to 27, M = 21.56) were recruited from the campus. All
participants were familiar with the QWERTY keyboard (M
= 4, from 1 – No skill to 5 – Expert) according to self-
report. Thirteen participants had previous experience with
HMDs before.

Apparatus%%

Figure 2: The experimental setting in Study 1. A participant

entered text on an HMD device with head rotation.

The experiment was conducted on Samsung’s Gear VR
with an S6 Edge Plus smartphone, which afforded a 96-
degree field of vision in the HMD. We employed a
Bluetooth gamepad to provide the button input. The system
leveraged built-in sensors on the phone to capture head
rotation. We implemented the three head-based text entry
techniques and the experimental system in Unity 3D. Our
software system logged gesture data (including timestamp
for each point), and interaction operations such as selection
and deletion of words.

Design%
Since all of the techniques used head rotation for input, we
employed a between-subject design to avoid potential
cross-learning effect between the three techniques. Each
technique was tested on 6 participants (4 males and 2
females). Each participant transcribed 48 phrases in 6
sessions, with each session containing 8 phrases. The 48
phrases were randomly sampled from the MacKenzie
phrase set [18]. The two independent factors were

Technique (DwellType, TapType and GestureType) and
Session.

Procedure%
Before testing, we described to participants the goal of the
experiment and the input method of the technique that was
to be tested. We told participants that error correction was
supported. Participants then familiarized themselves with
the technique. This warm-up phase usually took no more
than three minutes. We then instructed them to enter text
“as quickly and accurately as possible”. Between sessions,
participants took a 1-minute break. After the experiment,
we interviewed participants, and asked them to comment on
the technique that was tested. This experiment took about
50 minutes.

Result%
Text entry rate is measured in Words Per Minute (WPM),
with this formula

:1; =
<

=
×60×

1

5

where < is the length of the transcribed string, and T is
time in seconds.

Figure 3: Text-entry rates of three techniques over sessions in

Study 1. Error bars indicate standard deviation.

Fig. 3 shows the mean text entry rate over sessions for each
technique. Mixed ANOVA showed significant effects of
Technique (F2,15 = 19.7, p < .0001) and Session (F5,75 = 65.5,
p<.0001) on text entry rate. Among the three tested
techniques, GestureType was the fastest. Participants typed
15.75 WPM (SD = 2.62) in the first session, and achieved
19.04 WPM (SD = 3.26) in the final session. TapType was
the second fastest. Participants typed 10.14 WPM (SD =
1.13) at the beginning, and reached 15.58 WPM (SD =
2.42) in the final session. DwellType was the slowest.
Participants typed 8.48 WPM (SD = 1.16) in the first
session and achieved 10.59 WPM (SD = 1.07) in the final
session.

Word%Level*Uncorrected*and*Corrected*Error*Rate*
The corrected error rate and uncorrected error rate of all
three techniques were found to be low. For TapType,
DwellType and GestureType, the mean uncorrected error

0

5

10

15

20

25

1 2 3 4 5 6

M
ea

n
Ti

m
e (

s)

Session

TapType DwellType GestureType

rates were 0.57%, 2.46%, and 1.13% respectively, and the
mean corrected error rates were 1.45%, 1.23%, and 3.08%
respectively. ANOVA showed no significant effects of
Technique on corrected error rate or uncorrected error rate.

Interaction*Statistics*
We examined details on how users interacted with the three
techniques. We investigated three word-level actions (Table
1): Default, Select and Delete. Default means that the user
confirmed the default word in the text field. For TapType
and DwellType, it was the literal letters that had been input.
For GestureType, it was the Top-1 word that was predicted.
Select means the user selected a predicted word from the
candidate region other than the default word. Delete means
the user deleted a word that had just been input.

Action Y/N TapType DwellType GestureType

Default
Y 381 1425 1318

N 3 37 14

Select
Y 1193 82 254

N 6 1 4

Delete - 23 19 49

Total - 1606 1564 1639

Table 1: The number of word-level interactions done with the
three head-based techniques. Y/N indicates whether the input

word was correct or not.

For DwellType, 93.48% of the actions were Default
meaning that the participant entered every key of the
intended word. In 5.31% of the actions, the users leveraged
error correction meaning that the user dwelled on the wrong
key but the system successful corrected the input. The users
deleted the word in only 1.21% of the actions. These results
indicate that users were quite accurate at pointing in
DwellType. This is probably because by dwelling, users
looked at the letters when confirming selection. Due to this,
it was unlikely that a wrong letter was input.

For TapType, the results were quite different from
DwellType. Only 23.91% of actions were Default meaning
that the participant clicked inside every key of the intended
word. In 74.65% of the actions, users leveraged error
correction to input and selected a word in the candidate
region. The users deleted the word in only 1.43% of the
actions. These results showed that with TapType,
participants relied more on the correction ability of the
algorithm to input, rather than selecting keys accurately.

For GestureType, the most frequent action was Default
(81.27%) meaning that the user wrote a word gesture and
the system decoded it as the correct intended word. In 15.74%
of the actions, the user selected a word other than the
default one. In only 2.99% of the actions, users deleted the
word they had written in order to input again. These results
showed the gesture-word recognition algorithm performed
well. For 97% of the actions, it successfully interpreted

input either as the best match or by suggesting the intended
in the candidate region.

Subjective*Interview*
Fig. 4 shows the subjective feedback of participants. Since
this study followed a between-subject design, participants
gave these scores independently, without knowing about
other techniques.

We observe a significant effect of Technique on Perceived
Speed (F2, 15=10.5, p < .01). Post hoc pairwise comparisons
with Bonferroni correction showed the difference between
DwellType and the other two techniques to be significant,
while the difference between TapType and GestureType
was not significant. Participants found all three techniques
were easy to learn (M = 4.39, SD = 0.70), and subjectively
perceived TapType and GestureType to be fast (M = 3.83,
SD = 0.75; M = 4.33, SD = 0.82), and DwellType to be
slower (M = 2.5, SD = 0.55). It was also good to find that
participants considered the induced fatigue of all three
techniques to be acceptable (M = 2.61, SD = 1.03). Overall,
participants liked TapType and GestureType more than
DwellType.

Figure 4: Subjective feedback of participants over three

techniques (from 1 - not good to 5 - good) in Study 1. Error
bars indicate standard deviation.

IMPROVING!Word.Gesture!Recognition%
 OP OQ a b

Start 0.2455 0.1513 1.27 0.79

End 0.2694 0.1859 1.20 0.83

Middle 0.3856 0.2213 1.32 0.76
Table 2. The standard deviation of distance of the start, the

end and the middle points of gestures in Study 1. a and b are
the parameters to define the Mahalanobis distance.

In previous research, word-gesture recognition algorithms
were researched for finger/pen input. In our research, the
human head was used as the pointing device. Therefore,
there was the question of whether head input had any
distinct patterns that would affect the design of the
algorithm. To investigate this issue, we used the gesture
data from the first study to analyze the distance between

0

1

2

3

4

5

Speed Accuracy Distance Fatigue Learnability Preference

TapType DwellType GestureType

gesture and the word template at the start, at the end, as
well as at the middle points. We sampled 50 equidistant
points on each gesture; middle points were all 48 points
except start point and end point.

Results are summarized in Table 2, from which, we had two
major findings. First, users performed more accurately in
Y-axis than in X-axis. The mean distance on X-axis was
1.62, 1.45 and 1.74 times of that on Y-axis at the start, the
end and middle points of gestures respectively. In addition,
we found head rotation speed on X axis (5.32 key/s) was
3.41 times of that on Y axis (1.56 key/s). This finding
inspired us to place different weight on X-axis and Y-axis
for interpreting the gesture. To achieve this, we used the
Mahalanobis distance instead of the Euler distance which
had been used in our first study as well as in all previous
research [15, 22]. In our research, the Mahalanobis distance
was defined as

5R =
∆2T

UT
+
∆3T

WT

where

UW = 1,XXX
U

W
=
YZ

Y[

We use the Mahalanobis distance in order to prune
candidate words and compute the distance between gestures
and templates. According to an offline simulation based on
the gesture data in Study 1, this modification improved the
Top-1 accuracy (predicting the intended word as the most
probable) from 81.8% to 84.0% when compared to the
Euler distance-based algorithm.

Second, users performed more accurately for the start and
end of the gestures than the middle points. This inspired us
to assign more weight to the start and end of gestures than
to middle points. To determine the optimal weight, we ran a
simulation study that sampled weight value from 0 to 1 for
the mean distance of middle points. Our results showed that
a weight of 0.5 would yield an optimal Top-1 prediction
accuracy of 88.8%. This provided the second improvement
of the gesture-word recognition algorithm.

5\ = 0.25×5\, + 0.25×5\9 + 0.5×
5\&

9_,
&+T

` − 2

where 5\& is the Mahalanobis distance between the ith pair
of sampled points of template and input shape.

STUDY%2:%THE%POTENTIAL%OF%HEAD%GESTURE%TYPING%
In this experiment, we further investigated GestureType.
The goal was to explore the expert performance with our
modified algorithm.

Participants%and%Apparatus%
We recruited 12 participants (8 males and 4 females; aged
from 20 to 24, M = 21.08) in this study. None participated
in the first study. Participants rated their familiarities of

QWERTY keyboard between 3 and 5 (M = 4.17). Nine
participants used gesture typing before but none of them
used it as their default keyboard. Eleven participants had
previous experience with HMDs.

We used the same apparatus as in Study 1. We employed
the modified word-gesture recognition algorithm based on
the Mahalanobis distance.

Design%
The experiment was designed to have eight sessions. In
each session, all participants transcribed the same ten
phrases that were randomly sampled from the MacKenzie
phrase set [18], which contained a total of 49 words, among
which 39 were distinct. On average, a word contained 5.15
(SD = 2.54) letters. In this study, the only independent
factor was Session.

Procedure%
Before the experiment, we described the goal of the
experiment and the interaction method to the participants.
Participants then familiarized themselves with the HMD
device and interaction for five minutes. We then instructed
them to perform “as accurately and quickly as possible”.
After each session, participants took a 1-minute break.
After the experiment, we asked them to fill a questionnaire
and interviewed them about the subjective feedback.

Result%

Text%Entry*Rate*

Figure 5: Mean entry rates (WPM) over sessions in Study2.

Error bars indicate standard deviation.

As shown in Fig. 5, users typed 17.04 WPM (SD = 6.02) in
the first session and improved by 45.13% to achieve 24.73
WPM (SD = 8.48) in the last session. Text entry rate was
increased by 5.03 WPM in Session 1-4, and 2.01 WPM in
Session 5-8. The best performer typed 25 WPM in the first
session and ended up at 39 WPM. The learning curve
seemed not to converge at the end of the experiment.

Error*Rate*
In the eight sessions, the word-level uncorrected error rates
were 1.19%-2.56% (M = 1.96%, SD = 0.60%), while the
word-level corrected error rates were 1.38%-5.96% (M =
3.86%, SD = 1.35%). There was no significant effect of
Session on either error rates.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

W
or

ds
 P

er
 M

in
ut

e

Session

The*learning*effect*
To gain deeper insight into performance improvement, we
broke down the text entry time into three components:
gesturing time, selecting time and elapsed time. Gesture
time was the time spent on performing gestures. Selecting
time was the time span from ending the gesture to clicking
on a candidate word. Elapsed time was the time span from
inputting the last word to starting the gesture of the next
word. According to the data, gesturing time, selecting time
and elapsed time accounted for 61.64%, 7.46% and 30.90%
of the total text entry time respectively. As shown in Fig. 6,
the three component times continued to decrease with
sessions, and started to converge in the 5th or 6th session. On
the other hand, the Top-1 accuracy improved from 85.0% in
the first session to 89.8% in the last session, even though
ANOVA showed no significant effect of Session on Top-1
accuracy (F7,77 = 1.69, p = .12). These results showed that
participants learned to improve gesturing speed without
sacrificing final accuracy.

Figure 6: Mean gesturing time, selecting time and elapsed time

over sessions in Study 2. Error bars indicate standard
deviation.

The post-experiment interview also offered insights into the
strategy of users to perform better by adapting their input
behavior. As participants reported, they found longer words
to be more tolerant to inaccurate gestures. Therefore, they
performed gestures faster for longer words. To verify this,
we examined how the start distance, the end distance and
the middle-point distance changed with word length (the
number of contained letters). As shown in Fig. 7, as word
length increased, the mean gesture start/end distances were
relatively stable while the mean middle-point distance
increased significantly (F8,88=51.9, p<.0001). This indicated
that for longer words, participants actually performed more
inaccurately for the middle points rather than gesture start
and end, in order to save movement time. Moreover, users
had learned strategies to input individual words. Take
“shopping” for example. Since it was easy to confuse with
“shipping”, participants reported that they would traverse ‘o’
carefully to avoid ‘i’. Examples also included “breathing”
vs. “breaking”, “confirm” vs. “conform”, etc.

Figure 7: Distance (in key size) of gesture start, gesture end,

and middle points vs. word length in Study2.

Improvement*of*the*gesture%word*recognition*algorithm*
We assessed the power of the gesture-word recognition
algorithm based on the Top-1 accuracy (predicting users’
intended word as the best match). In Study 1 and Study 2,
the mean Top-1 accuracies were 81.27% and 84.5%
respectively. The improvement was 3.23%, which was not
as large as we found in the simulation study (7%). However,
we should consider the fact that participants transcribed the
same ten phrases in eight times in Study 2, and text entry
rate was 29% faster. To enable fair comparison, we ran
another simulation by testing the algorithm of Study 1 with
gesture data in Study 2. Results of this showed that the Top-
1 accuracy was only 74.19%, which was much lower than
the 84.5% we found in Study 2. This result showed the
improved algorithm indeed had a stronger power to decode
gestures into words.

Subjective*user*feedback*
The subjective user feedback was generally the same as that
of Study 1 for GestureType. In addition, most participants
reported they started to feel fatigue at the 6th session, which
was after intermittently typing 60 phrases for 40 minutes.
This result showed that the fatigue from head-based typing
was acceptable when text entry is short on HMDs (e.g.
searching a keyword or replying to a message).

Figure 8: Subjective user feedback of Study 2 with error bars

showing standard deviation.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8

M
ea

n
Ti

m
e (

s)

Session

GestureXTime ElapsedXTime SelectXTime

0

0.2

0.4

0.6

0.8

2 3 4 5 6 7 8 9 1 0

Start Distance End Distance Middle Distance

0

1

2

3

4

5

Speed Accuracy Distance Fatigue LearnbilityPreference

LIMITATION%AND%FUTURE%WORK%
The present research has a number of limitations, which
point to the direction of future work.

First, in this paper, the keyboard size and the control/
display ratio were determined according to the results of
our pilot study. We did not thoroughly research their effects
on users’ ability of head-based pointing or text entry.

Second, while this research focuses more on GestureType,
there remains room to research the other two techniques
(DwellType and TapType) in more depth. For example, it
would be valuable to research how expert users will adjust
the dwell time and how fast they can input with DwellType.

Third, GestureType only supports words in a predefined
dictionary. However, inputting OOV (out of vocabulary)
words is also important for practical use. One simple
solution is to combine TapType with it to support both
word-level and character-level input. The mode switch
should be smooth if we can distinguish a tap and a gesture
accurately. It would then be useful to examine the resulting
performance.

Forth, we used simple classical algorithms to parse input in
this research. More sophisticated algorithms and models
such as LSTM for gesture keyboard decoding [Error!
Reference source not found.] and HMM decoder [Error!
Reference source not found.] should further improve the
performance. We acknowledge that the obtained
performance of this paper does not reflect the ceiling rate,
but it is appropriate to explore the feasibility and compare
the general performance of three techniques.

Fifth, the current evaluation is a lab study. It is valuable to
run a long-term field experiment to test the performance
over a longer period of study and whether results would be
affected by external environment or everyday composition.

CONCLUSION%%
Head-mounted displays are emerging interaction platforms,
which can accommodate various VR and AR applications.
To our knowledge, our research is the first to compare
different head-based text entry techniques on HMDs. We
tested three representative methods with and without hands.
Our results showed that head-based text entry techniques
are both feasible and practical solutions on HMDs. Head-
based text entry techniques are not as fatiguing as it may
seem at first impression. Users can learn to type with their
head very quickly, and the text entry speeds are satisfactory.

In particular, we investigated gesture typing on HMDs in
depth. Our research was the first to adapt a gesture
keyboard to a HMD. We demonstrated that without the
need to pause to select keys, a head-based gesture keyboard
(GestureType) was unexpectedly fast (24.73 WPM), and
significantly outperformed head-based tap input (TapType)
by 59%. In contrast, the difference between the two input
methods for finger-based keyboard was not as significant
[25]. This is probably because the head is much slower and

less flexible than the finger. Therefore, our research
contributes a new scenario where gesture keyboards offer
an incomparable advantage.

Our research also identified patterns of head movement in
HMDs: User performed more accurately on X axis than on
Y axis. We utilize this finding to improve the gesture-word
recognition algorithm. As a result, both the simulation study
and the real-user study demonstrated the validity and
strength of the improvement. In this sense, we also
contributed a gesture-word recognition algorithm variation,
more specifically, by leveraging the Mahalanobis distance.
We hope this method can inspire future research about
gesture keyboard input where the motor control ability on
X-axis and Y-axis are not equal. Moreover, the pattern of
head movement we found in HMD may also provide
guidance for more HMD research other than text entry.

ACKNOWLEDGEMENT%
This work is supported by the National Key Research and
Development Plan under Grant No. 2016YFB1001200, the
Natural Science Foundation of China under Grant No.
61303076 and No. 61572276, Tsinghua University
Research Funding No. 20151080408.

REFERENCES%
1.! 2011. The Open American National Corpus.

http://www.anc.org/
2.! Ouais Alsharif, Tom Ouyang, Franc¸oise Beaufays,

Shumin Zhai, Thomas Breuel, Johan Schalkwyk. Long
short term memory neural network for keyboard
gesture decoding. In 2015 IEEE International
Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2015. 2076-2080

3.! Christoph Amma, Marcus Georgi, and Tanja Schultz.
2012. Hands-Free Mobile Text Input by Spotting and
Continuous Recognition of 3d-Space Handwriting with
Inertial Sensors. In 2012 16th International Symposium
on Wearable Computers (ISWC’12), 52-59.

4.! Xiaojun Bi, Ciprian Chelba, Tom Ouyang, Kurt
Partridge, and Shumin Zhai. 2012. Bimanual gesture
keyboard. In Proceedings of the 25th annual ACM
symposium on User interface software and
technology (UIST '12). 137-146.
http://dx.doi.org/10.1145/2380116.2380136

5.! Doug A. Bowman, Vinh Q. Ly, and Joshua M.
Campbell. 2001. Pinch keyboard: Natural text input for
immersive virtual environments.

6.! Xiang 'Anthony' Chen, Tovi Grossman, and George
Fitzmaurice. 2014. Swipeboard: a text entry technique
for ultra-small interfaces that supports novice to expert
transitions. In Proceedings of the 27th annual ACM
symposium on User interface software and
technology (UIST '14). 615-620.
http://dx.doi.org/10.1145/2642918.264735

7.! Weiya Chen, Anthony Plancoulaine, Nicolas Férey,
Damien Touraine, Julien Nelson, and Patrick Bourdot.
2013. 6DoF navigation in virtual worlds: comparison
of joystick-based and head-controlled paradigms.
In Proceedings of the 19th ACM Symposium on Virtual
Reality Software and Technology(VRST '13). 111-114.
http://dx.doi.org/10.1145/2503713.2503754

8.! Wenxin Feng, Ming Chen, and Margrit Betke. 2014.
Target reverse crossing: a selection method for camera-
based mouse-replacement systems. In Proceedings of
the 7th International Conference on PErvasive
Technologies Related to Assistive
Environments (PETRA '14). Article 39, 4 pages.
http://dx.doi.org/10.1145/2674396.2674443

9.! Yulia Gizatdinova, Oleg Špakov, and Veikko Surakka.
2012. Comparison of video-based pointing and
selection techniques for hands-free text entry.
In Proceedings of the International Working
Conference on Advanced Visual Interfaces (AVI '12),
Genny Tortora, Stefano Levialdi, and Maurizio Tucci
(Eds.). 132-139.
http://dx.doi.org/10.1145/2254556.2254582

10.! Joshua Goodman, Gina Venolia, Keith Steury, and
Chauncey Parker. 2002. Language modeling for soft
keyboards. In Proceedings of the 7th international
conference on Intelligent user interfaces (IUI '02). 194-
195.
http://dx.doi.org/10.1145/502716.502753

11.! Mitchell Gordon, Tom Ouyang, and Shumin Zhai.
2016. WatchWriter: Tap and Gesture Typing on a
Smartwatch Miniature Keyboard with Statistical
Decoding. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems (CHI '16).
3817-3821.
http://dx.doi.org/10.1145/2858036.2858242

12.! Tovi Grossman, Xiang Anthony Chen, and George
Fitzmaurice. 2015. Typing on Glasses: Adapting Text
Entry to Smart Eyewear. In Proceedings of the 17th
International Conference on Human-Computer
Interaction with Mobile Devices and
Services (MobileHCI '15). 144-152.
http://dx.doi.org/10.1145/2785830.2785867

13.! John Paulin Hansen, Kristian Tørning, Anders Sewerin
Johansen, Kenji Itoh, and Hirotaka Aoki. 2004. Gaze
typing compared with input by head and hand.
In Proceedings of the 2004 symposium on Eye tracking
research & applications (ETRA '04). 131-138.
http://dx.doi.org/10.1145/968363.968389

14.! Per Ola Kristensson and Keith Vertanen. 2012. The
potential of dwell-free eye-typing for fast assistive gaze
communication. In Proceedings of the Symposium on
Eye Tracking Research and Applications (ETRA '12),
Stephen N. Spencer (Ed.). 241-244.
http://dx.doi.org/10.1145/2168556.2168605

15.! Per Ola Kristensson and Shumin Zhai. 2004. SHARK2:
a large vocabulary shorthand writing system for pen-
based computers. In Proceedings of the 17th annual
ACM symposium on User interface software and
technology (UIST '04). 43-52.
http://dx.doi.org/10.1145/1029632.1029640

16.! Andrew Kurauchi, Wenxin Feng, Ajjen Joshi, Carlos
Morimoto, and Margrit Betke. 2016. EyeSwipe: Dwell-
free Text Entry Using Gaze Paths. In Proceedings of
the 2016 CHI Conference on Human Factors in
Computing Systems (CHI '16). 1952-1956.
http://dx.doi.org/10.1145/2858036.2858335

17.! I. Scott MacKenzie and R. William Soukoreff. 2002. A
character-level error analysis technique for evaluating
text entry methods. In Proceedings of the second
Nordic conference on Human-computer
interaction (NordiCHI '02). 243-246.
http://dx.doi.org/10.1145/572020.572056

18.! I. Scott MacKenzie and R. William Soukoreff. 2003.
Phrase sets for evaluating text entry techniques. In CHI
'03 Extended Abstracts on Human Factors in
Computing Systems (CHI EA '03). 754-755.
http://dx.doi.org/10.1145/765891.765971

19.! Päivi Majaranta and Kari-Jouko Räihä. 2007. Text
entry by gaze: Utilizing eye-tracking. Text entry
systems: Mobility, accessibility, universality: 175-187.

20.! Päivi Majaranta, Ulla-Kaija Ahola, and Oleg Špakov.
2009. Fast gaze typing with an adjustable dwell time.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '09). 357-360.
http://dx.doi.org/10.1145/1518701.1518758

21.! Anders Markussen, Mikkel R. Jakobsen, and Kasper
Hornbæk. 2013. Selection-based mid-air text entry on
large displays. In IFIP Conference on Human-
Computer Interaction. 401-418.

22.! Anders Markussen, Mikkel Rønne Jakobsen, and
Kasper Hornbæk. 2014. Vulture: a mid-air word-
gesture keyboard. In Proceedings of the SIGCHI
Conference on Human Factors in Computing
Systems (CHI '14). 1073-1082.
http://dx.doi.org/10.1145/2556288.2556964

23.! Roderick McCall, Benoît Martin, Andrei Popleteev,
Nicolas Louveton and Thomas Engel. 2015. Text entry
on smart glasses. In 2015 8th International Conference
on Human System Interaction (HSI). 195-200.

24.! Tao Ni, Doug Bowman, and Chris North. 2011.
AirStroke: bringing unistroke text entry to freehand
gesture interfaces. In Proceedings of the SIGCHI
Conference on Human Factors in Computing
Systems (CHI '11). 2473-2476.
http://dx.doi.org/10.1145/1978942.1979303

25.! Paul Nation and Robert Waring. 1997. Vocabulary
size, text coverage and word lists. Vocabulary:
Description, acquisition and pedagogy Rev 14: 6-19.

26.! Diogo Pedrosa, Maria Da Graça Pimentel, Amy
Wright, and Khai N. Truong. 2015. Filteryedping:
Design Challenges and User Performance of Dwell-
Free Eye Typing. ACM Trans. Access. Comput. 6, 1,
Article 3 (March 2015), 37 pages.
http://dx.doi.org/10.1145/2724728

27.! Shyam Reyal, Shumin Zhai, and Per Ola Kristensson.
2015. Performance and User Experience of
Touchscreen and Gesture Keyboards in a Lab Setting
and in the Wild. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing
Systems (CHI '15). 679-688.
http://dx.doi.org/10.1145/2702123.2702597

28.! Sayan Sarcar, Prateek Panwar, and Tuhin Chakraborty.
2013. EyeK: an efficient dwell-free eye gaze-based text
entry system. In Proceedings of the 11th Asia Pacific
Conference on Computer Human Interaction (APCHI
'13). 215-220.
http://dx.doi.org/10.1145/2525194.2525288

29.! Alexander Schick, Daniel Morlock, Christoph Amma,
Tanja Schultz, and Rainer Stiefelhagen. 2012. Vision-
based handwriting recognition for unrestricted text
input in mid-air. In Proceedings of the 14th ACM
international conference on Multimodal
interaction (ICMI '12). 217-220.
http://dx.doi.org/10.1145/2388676.2388719

30.! Srinath Sridhar, Anna Maria Feit, Christian Theobalt,
and Antti Oulasvirta. 2015. Investigating the Dexterity
of Multi-Finger Input for Mid-Air Text Entry.
In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems (CHI '15).
3643-3652.
http://dx.doi.org/10.1145/2702123.2702136

31.! Keith Vertanen, Haythem Memmi, Justin Emge,
Shyam Reyal, and Per Ola Kristensson. 2015.
VelociTap: Investigating Fast Mobile Text Entry using
Sentence-Based Decoding of Touchscreen Keyboard
Input. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing

Systems (CHI '15). 659-668.
http://dx.doi.org/10.1145/2702123.2702135

32.! Daniel Vogel and Patrick Baudisch. 2007. Shift: a
technique for operating pen-based interfaces using
touch. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI '07). 657-
666. http://dx.doi.org/10.1145/1240624.1240727

33.! Xin Yi, Chun Yu, Mingrui Zhang, Sida Gao, Ke Sun,
and Yuanchun Shi. 2015. ATK: Enabling Ten-Finger
Freehand Typing in Air Based on 3D Hand Tracking
Data. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software &
Technology (UIST '15). 539-548.
http://dx.doi.org/10.1145/2807442.2807504

34.! Chun Yu, Ke Sun, Mingyuan Zhong, Xincheng Li,
Peijun Zhao, and Yuanchun Shi. 2016. One-
Dimensional Handwriting: Inputting Letters and Words
on Smart Glasses. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing
Systems (CHI '16). 71-82.
http://dx.doi.org/10.1145/2858036.2858542

35.! Shumin Zhai, Per Ola Kristensson, Pengjun Gong,
Michael Greiner, Shilei Allen Peng, Liang Mico Liu,
and Anthony Dunnigan. 2009. Shapewriter on the
iphone: from the laboratory to the real world. InCHI
'09 Extended Abstracts on Human Factors in
Computing Systems (CHI EA '09). 2667-2670.
http://dx.doi.org/10.1145/1520340.1520380

36.! Shumin Zhai, Carlos Morimoto, and Steven Ihde. 1999.
Manual and gaze input cascaded (MAGIC) pointing.
In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems (CHI '99). 246-253.
http://dx.doi.org/10.1145/302979.303053

37.! Shumin Zhai and Per-Ola Kristensson. 2003.
Shorthand writing on stylus keyboard. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI '03). 97-104.
http://dx.doi.org/10.1145/642611.642630

38.! Shumin Zhai and Per Ola Kristensson. 2012. The
word-gesture keyboard: reimagining keyboard
interaction. Commun. ACM 55, 9 (September 2012):
91-101. http://dx.doi.org/10.1145/2330667.2330689

